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Abstract:

Euclid’s method for finding the greatest common divisor (GCD) of two integers was first described around
the year 300 B.C. This simple iterative method is often regarded as the grandfather of all algorithms in
Number Theory today. Many advances have been made since then—for example, Berlekamp’s algorithm
for multiplicative inverse and Montgomery’s technique for modular multiplication. These binary add-and-
shift algorithms for efficient finite field arithmetic operations have played important roles in today’s public-
key cryptographic systems.

Yet, two thousand three hundred years after Euclid’s GCD, one algorithm remained missing—division. For
many decades we did not tackle modular division problems directly. Instead, we relied on the Extended
Euclidean algorithm for calculating inversion and we computed division in a two-step process—inversion
followed by multiplication. This practice is so deeply rooted in our teachings and doings today that we have
neglected to ask whether the idea underlying the binary Extended Euclidean algorithm can also be applied
to finding a general solution for field division. This paper describes such a solution: a binary add-and-shift
algorithm for modular division in a residue class. This technique for fast computation of divisions in GF(2m)
is the key to a highly efficient implementation of elliptic curve cryptosystems.
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1. Introduction

Arithmetic operations in the Galois fieldGF(2m) have several applications in coding theory,
computer algebra, and cryptography. Efficient modular arithmetic algorithms play an important
role in today’s cryptographic systems. Most practical public−key systems exploit the properties
of arithmetic in large finite groups. For methods such as Diffie−Hellman and Elliptic Curve
cryptosystems, security depends on the contrast in difficulty between performing two group
operations: exponentiation vs. discrete logarithm. The discrete log problem is believed to be hard
compared to the exponentiation problem; and the elliptic curve discrete logarithm problem is
even harder. This is because of its different algebraic structure, its somewhat complex arithmetic
rules to "add" two points on an elliptic curve, and the lack of an index calculus method for the
elliptic curve domain. The core of elliptic curve computation hinges on a key arithmetic
operationmodular division. For decades we did not tackle modular division problems directly.
Instead, we relied on a two−step approach to this problem: an inversion followed by a
multiplication.  

In this paper, we present an efficient technique for calculating modular division inGF(2m)
modulo an irreducible binary polynomial, and in the prime integer fieldF(p). Before we do so,
we will first give an overview of several known algorithms for efficient finite field arithmetic
operations. Through this survey, the readers can see how various algorithms have evolved over
time, and appreciate what complicated arithmetic results simple repetitive binary adds−and−
shifts can produce.
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Over 2300 years ago, Euclid described, in Book 7 Propositions 1 and 2 of hisElements(c. 300
B.C.), a simple algorithm for finding the greatest common divisor of two integers. This
algorithm was chosen by Euclid to be the very first step in his development of the theory of
numbers. The greatest common divisor of two integersm and n, gcd(m, n), is the largest
integer that evenly divides bothm andn. The original form of theEuclidean algorithm employs
recursive integer division and is based on the fact that gcd(m−kn, n) = gcd(m, n) for anyk. In
other words, a common divisor ofm and n is also a divisor of m−kn and n. Conversely, a
common divisor of m−kn and n  must also divide both m  and n.  

A binary greatest common divisor algorithm was devised by Stein in 1961 [14]. This algorithm
is based on the following three simple facts: 1) Ifm andn are even, gcd(m, n) = 2 gcd(m/2, n/2);
2) If m is even andn is odd, then gcd(m, n) = gcd(m/2, n); and 3) If m andn are both odd,
thenm−n is even and gcd(m, n) = gcd(m−n, n). This algorithm relies solely on the subtraction,
parity testing, and right shifting of even numbers, and requires no division. It is, thus, more
suited for binary arithmetic.

An algorithm for calculating the modular inverse of an integer can be traced back to the
Aryabhatta (A.D. 499) of northern India. The multiplicative inverse of an integerm mod n
exists if and only ifm andn are relatively prime, i.e., gcd(m, n) = 1. We know that the greatest
common divisor of two integers can be expressed as a linear combination of the two numbers.
Therefore, we look for two integersr ands that satisfy the equationm r + n s = 1. Further, this
linear equation says thatm r ≡ 1 mod n; therefore, r is the inverse ofm mod n. By reversing
the steps in the Euclidean algorithm, one can derive r and s  while calculating gcd(m, n), see[5,9].
This reversed procedure to derive r and s  is known as the Extended Euclidean algorithm.

The Extended Euclidean algorithm was later adapted for computing the multiplicative inverse of
a binary polynomial overGF(2m) by Berlekamp in 1968 [1]. Given an elementp(t) in the field
of residue classes modulo an irreducible polynomialM(t) of degreem, Berlekamp’s algorithm
finds a polynomialr(t) of degree <m that satisfiesr(t)p(t) ≡ 1 mod M(t); thus r(t) is the
multiplicative inverse ofp(t) mod M(t). The idea underlying this algorithm is similar to that of
the Euclidean algorithm. By expressing the polynomials in a linear relationshipr(t) p(t) + M(t)
s(t) =1, one can deriver(t) through an iterative process similar to the Extended Euclidean
algorithm. Berlekamp further improved this technique by combining the iterations of the
division and Euclid’s algorithm into a unified procedure such that the algorithm requires no
divisions, but only shift and addition operations. Variants of this algorithm have been used in the
implementation of today’s Elliptic Curve cryptosystems.

In 1985, Montgomery introduced an efficient technique for multiplying two integers moduloN.
This method is commonly known as theMontgomery multiplication [11]. Like the Berlekamp
method, this algorithm computesxy 2−n mod N through an iterative process of additions and
shifts. Unlike the Euclidean and the Extended Euclidean algorithms, however, Montgomery
multiplication does so without involving any division byN. By setting S0=0, one can iteratively

calculate Si+1 =
Si+x i y

2
or

Si+xi y+N

2
, whichever is an integer; for i= 0,1,...n−1.

Herex i is the binary bits ofx andx i = 0 or 1. The result ofxy 2−n mod Nis either Sn or Sn−N.

This algorithm provides an efficient technique for computing modular exponentiations and is
commonly used in RSA hardware accelerator designs.  

Koc et al. [7] subsequently described the finite field analogue of the Montgomery Multiplication
for modular multiplication in GF(2m). Kaliski [4] also presented a binary algorithm for
computing the modular inverse of an integer x in Montgomery representation, i.e., x−12n  mod N.
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The above algorithms and many others not mentioned here have contributed greatly to the
advancement of today’s public−key cryptosystems. And, yet, one algorithm remained missing
todayfield division. For many years we have relied on the Extended Euclidean algorithm for
calculating division: we computed division using an inversion followed by a multiplication. 

This paper is organized as follows. In Section 2 we introduce a binary add−and−shift algorithm
for calculating modular division in a polynomial fieldGF(2m) and in a prime integer fieldF(p).
The application of this algorithm in the context of elliptic curve cryptography is described in
Section 3. We then discuss the time complexity of the algorithm in Section 4 by comparing it to
other algorithms.

The fundamental contributions this paper makes are to add to our understanding of the binary
algorithms for efficient field arithmetic operations, and to put in place the last missing piece of
the puzzle in modular arithmetic, namely, division. This algorithm opens up a new avenue for
the design of a field−division based elliptic curve cryptoaccelerator. The new algorithm uses
simple iterative binary add−and−shift operations and is suitable for hardware implementation.
Using wide−registers and bit−parallel logic circuits that can perform an addition and a shift in
one clock cycle, a hardware accelerator can be built to dramatically enhance the efficiency of an
elliptic curve cryptosystem.  

2. Computing Modular Division in Galois Field GF(2m)

We present an algorithm for field division inGF(2m) in this section. This algorithm takes as
input two elements ofGF(2m) represented as binary polynomials of degree< m, an irreducible
polynomial of the field of degreem, and produces the residue, which is an element inGF(2m).
Let M(t) be the irreducible polynomial of the field andy(t), x(t) be the input polynomials. We
need to compute  an output  r(t),  the  residue, which is defined as

                     r(t) ≡ y t

x t
mod M(t),   y(t) ≡ r(t) x(t)  mod M(t).

We initialize four auxiliary registers A, B, U, and V with values: A← x(t), B← Μ(t), U← y(t),
and V ← 0 . The routine iteratively reduces the polynomials in A and B down to 1 while
adjusting the values in U and V accordingly in order to maintain the following invariant
relationship between the four registers:

A * y(t) ≡ U * x(t) mod M(t)  and  B * y(t) ≡ V * x(t)  mod M(t).

We now describe the algorithm in some detail. Then we prove its correctness. On a practical
note, a polynomial can be represented as a binary bit−string. Using such a representation,
arithmetic operations are efficient and inexpensive. Additions can be done with bit−wise xor.
Dividing a polynomial byt, A/t, can be accomplished with a right−shift operation. One can
compare two polynomials, A>B, by treating their bit−strings as unsigned integers. 

The division algorithm below is an iterative process of additions, parity−testings, and shifts. The
process iterates while steadily reducing A and B. In every iteration, either A or B is reduced by
one bit, thus, the entire division routine takes no more than 2(m−1)  iterations.
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Modular_Division _GF(2 m){
    A← x(t), B← Μ(t), U← y(t), V← 0;
    while ( A not equal B ) do {

if ( A even )  then {  
A <− A / t;  
if  ( U even ) then U <− U / t else U <− (U+M) / t; 

} else if  ( B even ) then { 
B <− B / t; 
if  ( V even ) then V <− V / t else V <− (V+M) / t; 

} else if ( A > B ) then {
A <− (A+B) / t;  U <− U+V;  
if  ( U even ) then U <− U / t else U <− (U+M) / t;

    } else {
B <− (A+B) / t; V <− U+V;  
if  ( V even ) then V <− V / t  else V <− (V+ M) / t;

    } 
    }
} 

When the routine terminates, register U holds the result of the modular division. The degree of
U and V is bounded by M throughout the entire process; therefore, U and V never exceedm bits.
The least significant bit of U and V are zeroed prior to a reduction by adding M. This can be
done because adding an irreducible polynomial of the field is algebraically equivalent to adding
zero to the system. One notices that this algorithm is very similar in its style to the binary
Euclidean algorithm  as described in  [5, 9].

Throughout the entire division process, the polynomials in A, B, U, V obey theinvariant
relationship. This is true at initialization: A=x(t), U=y(t), B=M(t)≡ 0, and V=0. Throughout
the entire process, the invariant holds true because 

if  U is even then y(t) (A(t) / t ) ≡ x(t) (U(t) / t )  mod M(t),  

else y(t)  (A(t) / t ) ≡ x(t) ((U(t)+M(t) ) / t )  mod M(t);

if  V is even then y(t) (B(t) / t ) ≡ x(t)  (V(t) / t )  mod M(t),  

else y(t)  (B(t) / t ) ≡ x(t) ((V(t)+M(t)) / t )  mod M(t);

(A(t) +B(t))  y(t) ≡ ( U(t)+V(t))  x(t)  mod M(t).

At the end A=1, the result in the U register satisfiesy(t) ≡ U(t) x(t) mod M(t); thusU(t) is the
residue of the modular division. This algorithm works whenx(t) andM(t) are relatively prime,
and the routine terminates with A=B=1. This is always the case for elliptic curve cryptographic
applications with well−formed curves. Whenx(t) andM(t) are not relatively prime, the routine
terminates with the greatest common divisor of the two polynomials, A= B= gcd(x(t), M(t)).

This routine can also perform an inversion ofx(t) by initializing the U−register with "1".
Inversion is a special case of division, and in many cases, is cheaper to compute than a full
division. This is not the case here. With this algorithm, the costs of inversion and division are
the same because the runningtime is determined by the degrees ofx(t) and M(t) polynomials
in A and B.  Different initial values of  U do not affect the time complexity of this routine. 

This algorithm can be adapted for division in integer fields. Integer modular divisions are
required in the computation of Elliptic Curve digital signature generation and verification. We
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further optimize the algorithm and improve its efficiency such that a division in integer fields can
be completed within 2(m−1) steps:

Modular_Division_F(p) {
    A← x, B← Μ, U← y, V← 0;
    while ( A not equal B ) do {

if ( A even ) then {  
A <− A/2;  
if  ( U even ) then U <− U/2; else U <− (U+M)/2; 

} else if  ( B even ) then { 
B <− B/2; 
if  ( V even ) then V <− V/2; else V <− (V+M)/2; 

} else if ( A > B ) then {
A <− (A − B)/2;  
U <− U − V;   if  ( U<0 ) then U <− (U+M);
if  ( U even ) then U <− U/2; else U <− (U+M)/2;

    } else {
B <− (B − A)/2;  
V <− V−U;  if  ( V<0 ) then V <− (V+M);
if  ( V even ) then V <− V/2; else V <− (V+ M)/2;

    } 
    }
} 

3. Implementing Elliptic Curve Systems

Elliptic curve cryptosystem was first proposed in 1985 independently by Koblitz [6] and Miller
[10]. The security of such a scheme relies upon the difficulty of the Elliptic Curve Discrete
Logarithm problem. The core of elliptic curve arithmetic is an operation that computeskP by
adding k copies of an elliptic curve pointP. For the fieldsGF(2m), this point multiplication
operation can be performed in affine space through a combination of point doublings and point
additions using the algebraic formulae below. A simple and straight forward double−and−add
approach based on the binary expansion of the multiplierk will require (m−1) point doublings
and an average of (m−1)/2 point additions, where m  is the size of the field.

Point addition:     R =  P + Q Point doubling:    R =  2 P 

slope  s = ( yP − yQ) / (xP + xQ) Slope  s = xP + yP / xP 

xR = s2 + s + a + xP + xQ   

yR = s * (xP + xR) + xR + yP     

xR = s2 + s + a   

yR = xP
2 + ( s + 1  ) * xR   

If Q = −P,  R = P + (−P) = O, infinity If xP = 0, then  R = O, infinity
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The rules for doubling an elliptic curve point and for adding two elliptic curve points involve a
field division, either yP/xP or (yP−yQ)/(xP+xQ). Traditionally, this field division is computed

using an inversion(1/xP) and the multiplication of1/xP and yP. Alternatively, some have

avoided field inversions by performing elliptic curve computation in projective space [2, 12].
Using the projective coordinates version of Montgomery scalar multiplication as described in [8],
for example, elliptic curve point computation can be done using six multiplications. This
technique defers field inversions to the end of a point multiplication computation. One of the
problems of projective space implementations is that the efficient routines are unable to take
advantage of table look−up pre−computation. 

An efficient inversion routine was described by Schroeppel et al. [13]. They optimized the
algorithm for various computer architectures using either 32−bit or 64−bit word sizes, and the
running time reported  was roughly one field inversion  to three multiplications.  

Schroeppel, Orman, and O’Malley Inversion Routine {
      A← x(t), B← Μ(t), U←1, V← 0,  k←0;
      repeat {

while ( A even ) do
A= A/ t, V= V*t, k=k+1; 

if ( A=1 ) then return (U, k);
if ( deg(A) < deg(B) ) then exchange A,B  and exchange U,V;

    A <−  A+B,  U<− U+V;
      }
} 

Our division algorithm is very similar to the algorithm by Schroeppel et al. The new algorithm
also allows direct use of the simple formulae for computation in affine space. We restructure the
division algorithm  so that a reader can easily compare the complexity of the two algorithms:

Modular_Division _GF(2m){
      A← x(t), B← Μ(t), U← y(t), V← 0;
      repeat {

while ( A even ) do
{ A = A/ t; if  ( U even ) then U  = U/ t  else U = (U+M) / t; }

if ( A=1 ) then return U;
if ( A < B ) then exchange A, B and exchange U,V;

    A <− A+B, U <− U+V;
      }
} 

The algorithm by Schroeppel et al. does only a partial inversion, and requires an additional step
at the end to divide out the t 

k factor.  Such a step is not needed in the division routine.  
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4. Complexity Analysis

There are several ways to describe the running time complexity of an algorithm: by a standard
complexity analysis that does step counting, by a hardware model that counts the number of
clock cycles needed to execute an algorithm in a chip, by a software model that counts the
number of 32−bit or 64−bit arithmetic operations, or by actual performance timing. From the
view point of a standard complexity analysis, the two algorithms have the same time complexity
because both routines require2(m−1) steps to complete a field operation. Comparing the inner
loop complexity, the inversion routine requires one integer addition to performk=k+1, whereas
the division routine requires a polynomial addition to performU=(U+M)/t . This polynomial
addition is executed only 50% of the time on average, and can beaccomplished using two 32−
bit or 64−bit xor’s. This is because an irreducible polynomial for practical elliptic curve
applications is either a trinomial or a low−weight pentanomial. Thus, the two algorithms have
roughly equivalent inner loop  complexity.  

Several programming optimization tricks were used by Schroeppel et al. to improve the
performance of their algorithm, including inline coding within the inversion routine, using
separate variables instead of arrays to hold the polynomials, duplicating the code to avoid
swapping the polynomial variables, and, special coding to minimize unnecessary computation.
The same optimization techniques  can be applied to the new algorithm.

The new algorithm has two clear advantages in performance. First, it computes a division
directly whereas an inversion routine needs an additional multiplication to computeyP/xP. Thus,

this new algorithm is one−multiplication−time more efficient in the context of elliptic curve
computation. Second, the new algorithm does not need to divide out a factort k at the end. Such

a step can be costly for fields with pentanomial irreducible polynomials. In addition, the
simplicity of this new algorithm allows for compact implementation and makes the algorithm
more suited for 8−bit or 16−bit computing environments where memory space is limited. In a
hardware environment, the algorithm presents a significant improvement. Using wide registers
and bit−parallel logic circuits that can perform an addition and a shift in a single clock cycle, the
cost of a field division can be brought down further, close to two multiplication times. 

5. Conclusion

This paper presents an efficient algorithm for computing field divisions inGF(2m) and F(p).
Field division operations dominate the overall cost of elliptic curve computations. This operation
is required in every point addition and point doubling calculation. Improving the efficiency of
division  can significantly increase the overall performance of  elliptic curve cryptosystems.  

This new algorithm enables us to computey/x in one single operation, instead of computing
the residue as the product of1/x and y. Furthermore, the running time for computing a field
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division y/x using this new algorithm is roughly the same as the time for computing an inversion
1/x. Therefore, this new algorithm is one−multiplication−time more efficient in the context of
elliptic curve computations. An efficient division algorithm such as this has not appeared thus far
in the literature [3].

The algorithm opens up a new avenue for the design of field−division based hardware elliptic
curve crypto accelerators. It also makes the implementation of low−cost field−dividers viable in
restricted computing environments. ASIC processors based on this field division algorithm can
now be built to accelerate elliptic curve computations in low−power consumption devices such
as smart cards and wireless phones.  

This new algorithm also presents advantages for software implementation in small 8−bit or 16−
bit computing environments where memory space is constrained, such as the Palm platform.
First, the algorithm allows direct use of the simple point addition and point doubling formulae in
affine space. The algebraic formulae involved for computation in projective space is
significantly more complicated. Second, the simplicity of this new algorithm also lends itself to
a small and efficient implementation of the division routine. Therefore, the overall point
multiplication implementation using this division algorithm is more compact compared to using
projective techniques such as Montgomery scalar multiplication. 

Elliptic curve cryptosystems today have the smallest key−size requirement of all practical
public−key systems, and are considered the preferred method for small restricted computing
environments. As computers get faster, longer key−lengths will be required to keep these
cryptosystems secure. Elliptic curve systems will play an increasingly important role in such
environments and this division algorithm will be the key to a highly efficient implementation of
elliptic curve cryptosystems.
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